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The location of nucleosomes in the human genome determines the primary chromatin structure and regulates access to

regulatory regions. However, genome-wide information on deregulated nucleosome occupancy and its implications in pri-

mary cancer cells is scarce. Here, we conducted a genome-wide comparison of high-resolution nucleosome maps in periph-

eral blood B cells from patients with chronic lymphocytic leukemia (CLL) and healthy individuals at single-base-pair

resolution. Our investigation uncovered significant changes of nucleosome positioning in CLL. Globally, the spacing be-

tween nucleosomes—the nucleosome repeat length (NRL)—is shortened in CLL. This effect is stronger in the more aggres-

sive IGHV-unmutated CLL subtype than in the IGHV-mutated CLL subtype. Changes in nucleosome occupancy at specific

sites are linked to active chromatin remodeling and reduced DNA methylation. Nucleosomes lost or gained in CLL marks

differential binding of 3D chromatin organizers such as CTCF as well as immune response–related transcription factors and

delineated mechanisms of epigenetic deregulation. The principal component analysis of nucleosome occupancy in cancer-

specific regions allowed the classification of samples between cancer subtypes and normal controls. Furthermore, patients

could be better assigned to CLL subtypes according to differential nucleosome occupancy than based on DNAmethylation

or gene expression. Thus, nucleosome positioning constitutes a novel readout to dissect molecular mechanisms of disease

progression and to stratify patients. Furthermore, we anticipate that the global nucleosome repositioning detected in our

study, such as changes in the NRL, can be exploited for liquid biopsy applications based on cell-free DNA to stratify patients

and monitor disease progression.

[Supplemental material is available for this article.]

Chronic lymphocytic leukemia (CLL) is the most common blood
cancer in adults in theWestern world. Over the past decade, novel
therapies against specific targets, like Bruton tyrosine kinase, have
emerged in parallel with an increased understanding of its molec-
ular pathogenesis (Quesada et al. 2013; Ferreira et al. 2014;Nabhan
and Rosen 2014; Bosch and Dalla-Favera 2019). Previous genome-
wide studies of CLL (epi)genomics and transcriptomics have fo-
cused on DNA mutations (Landau et al. 2015; Puente et al. 2015)
and the interplay between gene expression, deregulated chroma-
tin features likeDNAmethylation, histonemodifications, chroma-
tin accessibility, and transcription factor (TF) binding, as well as
long-range chromatin interactions (Ferreira et al. 2014; Kulis
et al. 2015; Queirós et al. 2015; Oakes et al. 2016; Rendeiro et al.

2016; Beekman et al. 2018; Mallm et al. 2019; Vilarrasa-Blasi
et al. 2021). However, the primary chromatin structure of
CLL with respect to the location of nucleosomes within the ge-
nome has not been systematically characterized in patient sam-
ples, which is also the case for almost all other tumor entities.
Nucleosome positioning affects gene expression by modulating
accessibility of TFs to their DNA binding sites as an important
part of gene regulation in eukaryotes. Thus, nucleosomemaps pro-
vide insight into gene regulatory mechanisms in disease and can
be used for diagnostics in liquid biopsies (Shtumpf et al. 2022).
Genome-wide maps of nucleosome positions are usually obtained
by digesting linker DNA with nucleases, such as MNase, followed
by sequencing the DNA associated with the histone octamer
core (Teif and Clarkson 2019; Shtumpf et al. 2022). Most previous
studies of this kind investigated cell lines or nonmalignant cells
(Schones et al. 2008; Valouev et al. 2011; Gaffney et al. 2012;9Present address: University College London, London WC1E 6BT, UK
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Kundaje et al. 2012; Diermeier et al.
2014; Ho et al. 2014). Related methods
include single-cell-based Strand-seq
(Jeong et al. 2023), which is inherently
more stochastic, as well as ATAC-seq,
which is frequently used for cancer cells
and tissues (Grandi et al. 2022). The
latter method is well suited to detect re-
positioning of one to two nucleosomes
near TF binding sites (Beekman et al.
2018; Mallm et al. 2019) but does not
provide genome-wide nucleosome occu-
pancy maps. Precisely mapped nucleo-
some locations across the whole genome
of malignant and nonmalignant cells
are becoming increasingly important
for clinical diagnostics of cell-free DNA
(cfDNA), which contains nucleosome-
protected genomic regions (Snyder et al.
2016; Shtumpf et al. 2022). This need
goes beyond blood cancers, because even
in the case of solid tumors, most of the
pieces of cfDNA come from blood cells
and only a small fraction originates from
tumor tissues.

Here, we exploited our high-
throughput sequencing experiments
with MNase-assisted histone H3 ChIP-
seq (Mallm et al. 2019) at a sequencing
depth of more than 4 billion DNA se-
quence reads to address the following
aims: (1) derive complete genome-wide
nucleosome occupancy maps at base-
pair resolution and detect individual
nucleosome position changes in human
primarymalignant versus nonmalignant
B cells (NBCs), from patients with CLL
and healthy donors; (2) dissect both the
repositioning of individual nucleosomes
and the collective behavior of nucleo-
somes in CLL at the global chromatin re-
organization level, for example, with
respect to the average spacing between
nucleosomes; and (3) compare nucleo-
some occupancy in two clinically im-
portant CLL subtypes that have the
immunoglobulin heavy-chain variable
region (IGHV) mutated (M-CLL) or
unmutated (U-CLL), associated with fa-
vorable or poor prognosis, respectively.

Results

CLL is characterized by global changes of

nucleosome positioning

We determined nucleosome positions in
malignant B cells from CLL patients and
NBCs pooled from healthy individuals
using high-coverage MNase-assisted histone H3 ChIP-seq (Fig.
1A). About 4 billion paired-end reads obtained in our experiments
were combined to compare the average nucleosome occupancies

in 100-bp bins across the genome in CLL patients versus healthy
individuals. The Pearson’s correlation between samples was high
(r=0.95), indicating that only a small fraction of the genome
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Figure 1. Changes of nucleosome positioning betweenNBCs,M-CLL, and U-CLL. (A) Data sets and read-
outs. Nucleosome landscapes were derived from MNase-assisted H3 ChIP-seq for nonmalignant B cells
(NBCs) from healthy donors or CLL patients stratified into IGHV-mutated (M-CLL) or unmutated (U-CLL).
These maps were integrated with data from WGBS, ATAC-seq, ChIP-seq of transcription factors (TFs)
and six histone modifications, Hi-C, and RNA-seq to dissect molecular mechanisms of nucleosome
repositioning. (B) Nucleosome occupancy maps in NBCs and CLL at a genomic region enclosing the pro-
moter of the gene ICAM1. Gene expression of ICAM1 was 10-fold reduced in CLL. The total signal of
MNase-assisted H3 ChIP-seq is used without size selection of DNA fragments. (C) Distributions of DNA frag-
ment sizes fromMNase-assisted H3 ChIP-seq in NBCs, M-CLL, and U-CLL. (D) Nucleosome occupancy and
DNAmethylation for the same region as in panel B but using only 120- to 180-bp-sized DNA fragments. (E)
Genome-wide nucleosome repeat length (NRL). A decrease from∼200bp inNBCs (black) to∼198 bp inM-
CLL (red) to ∼195 bp in U-CLL (blue) is apparent. Each triangle symbol corresponds to one biological sam-
ple. Colored boxes indicate 25%–75% confidence interval; whiskers, range within 1.5 IQR; horizontal line,
median; and open squares, mean values. Values inside DMRs shown by asterisk symbols correspond to co-
hort averages for NBCs (black), M-CLL (red), and U-CLL (blue), with vertical bars depicting the standard
deviation.
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undergoes significant changes of nucleosome occupancy in CLL
versus NBCs, and random nonspecific regions displayed very sim-
ilar profiles (Supplemental Fig. S2A). However, the averages across
groups showed clear differences between nonmalignant and ma-
lignant cells (Supplemental Fig. S1) particularly at regulatory re-
gions (Fig. 1B; Supplemental Figs. S2B–D, S3). Such regions
typically displayed distinct nucleosome occupancy changes in
nanodomains of ∼1–5 kb in size. In addition, we observed two
global genome-wide effects. First, the length of nucleosome-pro-
tected DNA fragments was shorter in both CLL subtypes than in
the nonmalignant controls (Fig. 1C), with higher enrichment of
subnucleosomal fragments in U-CLL. Studies on cfDNA of cancer
patients have shown that it is also enrichedwith shorter fragments
in comparison to cfDNA of healthy individuals (Lo et al. 2021). To
study nucleosome repositioning separately from this effect, in the
following analysis we applied filtering to consider only DNA frag-
ment sizes between 120 and 180 bp (Fig. 1D; Supplemental Figs.
S1G, S3). A second global, genome-wide difference was the short-
ening of the average distance between the centers of neighboring
nucleosomes, which is given by the nucleosome repeat length
(NRL) (Fig. 1E). The average NRL decreased from 200.6± 0.6 bp
in NBCs to 198.1± 0.5 bp in M-CLL to 195.5 ±0.6 bp in U-CLL.

These differences were statistically significant (two-sample t-test;
P=0.0028 for M-CLL vs. NBCs, P=4.1 ×10−5 for U-CLL vs.
NBCs) and comparable to NRL changes previously reported be-
tween different cell types during stem cell differentiation (Teif
et al. 2012). Furthermore, this effect was even more pronounced
inside differentially methylated regions (DMRs), where average
NRL decreased from 199.6 bp in NBCs to 196.2 bp in M-CLL to
193.4 bp in U-CLL.

Nucleosome repositioning occurs preferentially in DNA

methylation–depleted regions

Next, we asked what distinguishes genomic loci with (un)changed
nucleosome occupancy in CLL. DNA methylation appeared to sta-
bilize nucleosomes,withnucleosomes inhighlymethylated regions
keeping their locations across NBCs, U-CLL, andM-CLL (Fig. 2A). In
contrast, nucleosomes that shifted by >20%betweenNBCs andCLL
were mostly depleted of DNA methylation in all conditions (Fig.
2B). In addition, we also detected significant differences of nucleo-
some occupancy associated with CLL-specific changes of DNA
methylation (Fig. 2C). The difference in nucleosome occupancy
was clearly detectable in NBCs versus M-CLL and was even more
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pronounced in NBCs versus U-CLL. For comparison, we calculated
nucleosome profiles around Alu repeats, which are known to stabi-
lize nucleosomes (Fig. 2D; Teif et al. 2017). Nucleosome occupancy
around centers of Alu repeats showed a distinct, stable profile across
all conditions, underlining that the variability we detected in CLL
cells is coupled to DNA methylation.

Nucleosome relocation correlates with chromatin remodeling

activity

To characterize regions with increased or decreased nucleosome oc-
cupancy in CLL in further detail, we segmented the whole genome
intononoverlapping 100-bp bins and calculated the normalized nu-
cleosome occupancy for each bin.We then defined regionswith sta-
ble nucleosome occupancy across all samples from the same
condition and conducted a pairwise comparison between condi-
tions. Regions where nucleosome occupancy was significantly dif-
ferent between two conditions were selected for further analysis
and annotated as lost-nucleosome or gained-nucleosome regions
correspondingly. This analysis identified thousands of regions
with differential nucleosome occupancy in the comparison of M-
CLL versus NBCs (Fig. 2E,F) and U-CLL versus NBCs (Fig. 2G,H).
The nucleosome occupancy profiles of these regionsweremore sim-
ilar between the two CLL subtypes and distinct from NBCs. DNA
methylation profiles also showed differences between the M-CLL
and U-CLL subtypes (Fig. 2E–H): Regions that lost nucleosomes in
U-CLL versus NBCs were enriched with DNAmethylation, whereas
those that lost nucleosomes inM-CLL versus NBCs were depleted of
DNA methylation. Similarly, regions that gained nucleosomes in
U-CLL versus NBCs (but not in M-CLL vs. NBCs) were depleted of
DNAmethylation. These DNA methylation profiles were highly re-
producible across all samples of the same condition (Supplemental
Fig. S4). To assess whether nucleosome repositioning in CLL can
be linked to the activity of chromatin remodeling complexes, we in-
tegrated three previously determined ChIP-seq data sets of chroma-
tin remodelers into our analysis. (1) We compared the nucleosome
maps in NBCs with the binding sites of BRG1, the ATPase of the
SWI/SNF chromatin remodeling complex (Abraham et al. 2013).
Nucleosomes that did not change locations between conditions
were depleted of BRG1 in NBCs, whereas shifted nucleosomes
(>20% change of their start/end coordinates) were enriched with
BRG1 (Fig. 2I). The regions that gained nucleosomes in both M-
CLL andU-CLL versus NBCs had amore than threefold enrichment
of BRG1 in comparison with neighboring regions (Fig. 2J). (2) The
loci boundby another chromatin remodeler, CHD1, in lymphoblas-
toid B cells (The ENCODE Project Consortium 2012) were enriched
at sites that gainednucleosomes (Fig. 2K).M-CLL sampleswere char-
acterized by a more than zerofold enrichment. (3) The regions that
gained nucleosomes in M-CLL displayed an approximately 15-fold
enrichment at binding sites of the histone deacetylase HDAC1, a
subunit of the NuRD chromatin remodeling complex (Fig. 2L; Sup-
plemental Fig. S5; Lai and Wade 2011). This value was determined
using a recently published ChIP-seq data set from peripheral blood
mononuclear cells from CLL patients (Lai et al. 2023). These consis-
tent findings for three different complexes, SWI/SNF, CHD1, and
NuRD, suggest that nucleosome relocation inCLL is subtype specific
and is likely to involve active chromatin remodeling.

Nucleosome repositioning marks CLL-specific gene regulation

Regions with gained nucleosome occupancy in one of the CLL sub-
types versus NBCs were enriched with promoters, active enhancers,
CpG islands, andCTCFbinding sites, whereas themost pronounced

nucleosome loss was at enhancers active in CLL (Fig. 3A,B). For
CTCF sites, the fold enrichment of regions with increased nucleo-
some occupancy was larger for those with high similarity to the
consensus CTCF motif. Regions with gained nucleosome occupan-
cy in CLL were enriched with cancer-related pathways including
both generic pathways typically deregulated in cancer as well as
CLL-specific ones, such as B cell receptor signaling (BCR) (Fig. 3C,
D). The largest group of genes marked by regions that gained nucle-
osomes in CLL was related to the immune system (more than 350
genes, P=0.01). A similar pairwise comparison of regions with dif-
ferential nucleosome occupancy between U-CLL and M-CLL is
shown in Supplemental Figure S6, C andD. In addition,we repeated
this analysis including all DNA fragments from MNase-assisted H3
ChIP-seq without size selection (Supplemental Fig. S7). It revealed
that the largest fraction of nucleosomes repositioned in CLL versus
NBCs resides in 700,000 regions of 100-bp size. These loci were
termed “variable” because their nucleosome occupancy signifi-
cantly varied across CLL patients while being stable across all NBC
samples (Supplemental Fig. S7A). The most informative group of
nucleosome changes that distinguished CLL was the fraction of
gained nucleosomes in regions where nucleosome occupancy in
CLL increased in comparison with NBCs (Supplemental Fig. S7D).
The intersection of such gained-nucleosome regions with gene pro-
moters marked the B cell receptor signaling pathway (BCR) as the
top hit (P=1.6×10−5), followed by the T cell receptor signaling
pathway (P=3.2×10−4) (Supplemental Tables S1–S3).

The correlated differences of nucleosome occupancy and
gene activity could also be related to a differential activity of cis-
regulatory enhancer regions in NBCs and CLL. Active enhancers,
as defined previously frommultiomics profiling in this patient co-
hort (Mallm et al. 2019), were characterized by nucleosome deple-
tion. In contrast, all enhancers, which contain many inactive
ones, were characterized on average by increased nucleosome oc-
cupancy (Fig. 4A–D). Of note, active NBC enhancers had very sim-
ilar DNA methylation profiles between U-CLL and M-CLL,
whereas their nucleosome occupancy profiles distinguished be-
tween the two CLL subtypes (Fig. 4C). Nucleosome occupancy dif-
fered betweenCLL andNBCs even at the scale of∼100 kb, based on
A and B chromatin compartments defined with Hi-C (Vilarrasa-
Blasi et al. 2021). The more open and active A compartments dis-
played nucleosome depletion in NBCs but not in U-CLL (Fig.
4E). In contrast, the inactive and closed B compartments displayed
a flat profile of nucleosome occupancy in all conditions (Fig. 4F).
Thus, functionally relevant differences in CLL nucleosome occu-
pancy occurred both at the level of single nucleosomes at promot-
ers and enhancers and on larger scale of active chromatin
subcompartments.

CLL-specific changes in nucleosome positioning, CTCF binding,

and histone modifications are correlated

Next, we focused on regions with dysregulated CTCF binding (Fig.
5). Sites that were bound by CTCF both in NBCs and CLL were de-
fined as “common.” Nucleosome occupancy profiles around com-
mon CTCF sites had the same shape for NBCs and CLL. They
showed a pronounced depletion in the center surrounded by char-
acteristic oscillations, reflecting the regular nucleosome array posi-
tioned by CTCF. The average DNA methylation profiles were
depleted in a wider area of ±200 bp surrounding common CTCF
sites both in NBCs and CLL (Fig. 5A). In the case of sites that lost
CTCF binding in CLL (termed “lost”), NBCs were characterized by
nucleosome depletion around CTCF binding sites, as opposed to a
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peak of nucleosome occupancy inU-CLL andM-CLL (Fig. 5B). DNA
methylation profiles also gained peaks near lost CTCF sites in CLL.
Moreover,M-CLL andU-CLL displayed different trends.M-CLLhad
higher nucleosome occupancy around both common and lost
CTCF sites, whereas the increase in DNA methylation near lost
CTCF sites was higher in U-CLL. We also investigated the effect of
CTCF loss in CLL on different histone modifications (Fig. 5C).
The largest changes were observed for a reduction of the active en-
hancer mark H3K4me1 and increase of the repressive heterochro-
matin marks H3K9me3 and H3K27me3 in CLL. In addition, we
evaluated a recently reported pan-cancer set of CTCF sites undergo-
ing consistent changes across several cancer types (Supplemental
Fig. S8A,B; Fang et al. 2020). Nucleosome occupancy at these
CTCF sites was not significantly different between NBCs and CLL,
suggesting that the pan-cancer data set of Fang et al. (2020) is less
specific for CLL than the variable CTCF sites defined in our work.

Nucleosome repositioning reveals differential TF binding in CLL

To study effects of TF-nucleosome interaction, we determined en-
riched TFmotifs inside regions with differential nucleosome occu-
pancy in CLL (Fig. 6A), calculated nucleosome profiles around
their binding sites (Fig. 6B,C), and visualized gene networks affect-
ed by nucleosome repositioning at the corresponding TF binding
sites in M-CLL and U-CLL (Fig. 6D). This analysis revealed three
major cases. (1) For one set of TF binding sites, nucleosome profiles

in NBCs, M-CLL, and U-CLL had a similar shape but differed in av-
erage nucleosome occupancy (e.g., ZNF263, PAX9, and PAX5 in
Fig. 6B). For these motifs, U-CLL and M-CLL were more similar
to each other than to NBCs. (2) In NBCs, M-CLL, and U-CLL, the
shape of nucleosome profiles was similar, but NBCs and M-CLL
profiles were located closer to each other and further away from
U-CLL (e.g., TCLF5, HES5, and E2F3 in Fig. 6B). In this group,
the different average nucleosome occupancy level likely reflects
the change in local nucleosome landscape not related directly to
the binding of a given TF but rather determined by the binding
of other factors nearby. (3) The shape of nucleosome occupancy
profiles changed between CLL andNBCs. These included the tran-
sition from low nucleosome occupancy in NBCs to a peak in CLL,
for example, JUND, PKNOX2, and FOSL1 (Fig. 6C). Such nucleo-
some profile changes were accompanied by gene expression differ-
ences in CLL versus NBCs, for example, an approximately twofold
reduction for FOSL1. Supplemental Figures S9 and S10 shownucle-
osome occupancy profiles of TFs enriched in regions with differen-
tial nucleosome occupancy defined above but limited to binding
sites inside CLL-specific ATAC-seq peaks.

In addition to the analysis based on nucleosome-size DNA
fragments above, we also performed a similar analysis for all
DNA fragments without size-filtering. The analysis of 2508 pro-
moters with gained nucleosomes revealed B cell receptor signaling
as the top enriched pathway (Supplemental Tables S1, S2) and the
so-calledCG-box as the top enrichedmotif (P=1.1 ×10−37, 591 out
of 2508 sites) (Supplemental Fig. S11B). Thus, TFs recognizing this
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motif such as SP1/2 and EGR1/2 are likely to be involved in CLL
deregulation. The expression of genes encoding these TFs was
only moderately changed in comparison with nonmalignant con-
trols (log2 fold change −0.65 for SP1, −2.4 for SP2, −3.0 for EGR1,
−0.26 for EGR2), indicating that nucleosome repositioning can be
more informative than TF gene expression levels in peripheral
blood B cells for assessing TF activity. Supplemental Figure S12
shows that nucleosome occupancy profiles around SP1 change
from nucleosome depletion across all SP1 sites to nucleosome oc-
cupancy peak for a subset of these sites covered by “variable” nu-
cleosomes in CLL. A less-frequent motif present in promoters of
these genes can be recognized by SOX11 and SOX4 among other
TFs (Supplemental Fig. S11). SOX11 was proposed as a prognostic
marker in CLL (Roisman et al. 2015), whereas SOX4 plays a role in
other B cell malignancies (Sarkar and Hochedlinger 2013). Based
on RNA-seq in this patient cohort, SOX4 was 128-fold down-regu-

lated in CLL versus nonmalignant con-
trols. An SP1 binding site inside the
SOX4 promoter was associated with a
distinct nucleosome peak appearing at
the place of the nucleosome depletion
in nonmalignant controls (Supplemen-
tal Fig. S2D), suggesting that differential
SP1/2 or EGR1/2 binding might occur
upstream of SOX4 dysregulation.

CLL patients can be stratified based on

nucleosome occupancy

We examined the classification of sam-
ples based on different epigenetic param-
eters. First, we asked whether it is
possible to distinguish NBCs, M-CLL,
and U-CLL based on gene expression.
Figure 7A shows that principal compo-
nent analysis (PCA) of gene expression
values clearly distinguished CLL from
NBCs but not the CLL subtypes from
each other. Second, we attempted the
same classification using DNA methyla-
tion of gene promoters. Figure 7B depicts
the clear differences in DNAmethylation
between sample types. However, pro-
moter DNA methylation did not segre-
gate the three groups very effectively,
and there was a partial overlap among
the three clouds/sample types. Finally,
we asked whether the nucleosome repo-
sitioning as identified in this study can
serve as a novel biomarker. For example,
nucleosome occupancy at the 100-bp re-
gions that lost nucleosomes in U-CLL
versus NBCs in each of the 26 samples
(including six NBCs, four U-CLLs, and
16 M-CLLs) was informative in PCA. As
shown in Figure 7, C–E, PCA based on
nucleosome occupancy allows discern-
ing not only CLL from NBCs but also
M-CLL from U-CLL. Notably, regions
with differential nucleosome occupancy
defined using only one CLL subtype
worked to distinguish the other CLL sub-

type fromNBCs as well (Fig. 7C–F). Regions that gained or lost nu-
cleosomes in U-CLL versus NBCs or lost nucleosomes in M-CLL
versus NBCs allowed good stratification of all studied subtypes
(Fig. 7C–E), whereas regions that gained nucleosomes in M-CLL
were common between CLL subtypes and less effective in stratify-
ing patients (Fig. 7F). Our additional calculations showed that un-
like gained-nucleosome and lost-nucleosome regions, nucleosome
occupancy or DNA methylation inside other genomic features
such as promoters, enhancers, or CTCF sites is not as effective in
distinguishing between M-CLL, U-CLL, and NBCs (Supplemental
Figs. S13, S14).

Discussion

Large progress in understanding the contribution of chromatin
features to CLL pathogenesis has been made in recent years
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(Beekman et al. 2018; Gaiti et al. 2019; Mallm et al. 2019; Pastore
et al. 2019; Rendeiro et al. 2020; Vilarrasa-Blasi et al. 2021). How-
ever, the contribution of nucleosome positioning has not been in-
tegrated. This essential knowledge gap was addressed here by
compiling occupancy maps at single-nucleosome resolution in
NBCs, U-CLL, andM-CLL. Based on these data, our study introduc-
es nucleosome positioning as a powerful biomarker and provides
novel mechanistic insights of chromatin-mediated deregulation
in CLL (Fig. 7G). We detected changes in the nucleosome land-
scape at two levels. First, our analysis revealed a genome-wide
decrease of the NRL in CLL (Fig. 1E), which was most pronounced
in the U-CLL subtype. This finding has implications for under-
standing nucleosome positioning patterns in malignant and non-
malignant B cells and could be applied to cancer diagnostics based
on liquid biopsy approaches (Shtumpf et al. 2022). NRL changes at
the scale of a few base pairs are known to occur during cell differ-
entiation (Teif et al. 2012) but have not been evaluated previously
in primary tumor cells against the same nonmalignant cell type.
Furthermore, we observed differences between the two CLL sub-
types, with themore aggressive U-CLL subtype having the smallest
NRL. The effect of NRL shortening in cancer cells reported here
may not be limited to CLL. In a separate study, we found a similar
NRL shortening effect in paired tumor versus normal samples from
breast cancer patient tissue samples (Jacob et al. 2023). Thus, NRL
changes may be generally informative to identify tumor subtypes
with distinct disease course. It is worth noting that the cancer-spe-
cific decrease inNRL represents a genome-wide feature, integrating

information from the large part of the genome, including regions
outside of annotated genes.

Our analysis of local changes of nucleosome occupancy
showed that DNAmethylation correlated with more stably bound
nucleosomes, whereas nucleosomes that shifted their position in
CLL were at less methylated sites (Fig. 2A,B). This relation was
also observed in our previous studies in mouse embryonic stem
cells (Teif et al. 2014; Wiehle et al. 2019), but it can be overwritten
in specific regions by other mechanisms. For example, regions
characterized by differential nucleosome occupancy in CLL can
be either depleted or enriched with DNA methylation depending
on the CLL subtype (Fig. 2E–H). Thus, DNA methylation can act
in two ways: (1) as a targeted mechanism changing the cell fate
and (2) as a general protection mechanism from stochastic can-
cer-associated epigenetic changes. Such nucleosome repositioning
is likely happening as an active process, which is reflected by the
enrichment of the chromatin remodelers SWI/SNF (BRG1 sub-
unit), CHD1, and NuRD (HDAC1 subunit) at these sites (Fig. 2I–
L). SWI/SNF, NuRD, and other remodelers play an important role
in normal hematopoiesis and are linked to malignant transforma-
tion in leukemia (Andrades et al. 2023; Najm et al. 2023).
Mutations in the CHD1 homolog CHD2 are among the most fre-
quent mutations in CLL and are characteristic of the M-CLL sub-
type (Rodríguez et al. 2015). The concept of preferential
nucleosome repositioning in active regions is also consistent
with large-scale changes of nucleosome occupancy that we ob-
served at the active A compartment (Fig. 4). It is worthmentioning
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that the interplay between DNA methyl-
ation and nucleosome remodeling could
also be one of themechanisms leading to
NRL changes, because nucleosome spac-
ing changes were more pronounced in
DMRs (Fig. 1E).

In addition to the global deregula-
tion of nucleosome positioning, distinct
changes of nucleosome occupancy at
the scale of single nucleosomes marked
individual regulatory regions critical for
CLL. These regions were particularly en-
riched for CTCFbinding sites, enhancers,
and promoters. Sites with CTCF binding
loss became covered by nucleosomes
and gained methylation in a CLL sub-
type–dependent manner (Fig. 5A,B).
The changes at promoters were associat-
ed with CLL-specific and immunity-re-
lated pathways (Fig. 3). The analysis of
the interplay between TF binding and
nucleosome positioning allowed us to re-
construct CLL-specific TF networks (Fig.
6D). The most enriched TF binding sites
inside regions with differential nucleo-
some occupancy were related to innate
immunity (such as IRF8 and IRF1), the
germinal center establishment (BCL6)
(Capello et al. 2000; Mlynarczyk et al.
2019), 3D genome organization (CTCF
and its interaction partners, including
the cancer-specific competitor BORIS/
CTCFL), and NRF1, a TF that displays
DNA methylation–dependent binding
(Domcke et al. 2015). It is worth noting
that several deregulated TFs detected in
this study have not been previously asso-
ciated with CLL, although some are in-
volved in other cancers (Fig. 6). Overall,
three major groups of CLL-specific TFs
were identified: (1) TFs for which nucleo-
some occupancy profiles around binding
sites had quantitatively similar changes
in the average occupancy level in U-
CLL and M-CLL versus NBCs, including
PAX9 and PAX5 (Fig. 6B). Higher expres-
sion of PAX9 was reported for U-CLL and
linked to a poorer clinical outcome (Rani
et al. 2017), whereas PAX5 is critical for
both NBC development and CLL patho-
genesis and evolution (Puente et al.
2015; Ott et al. 2018; Klintman et al.
2021); (2) TFs for which nucleosome pro-
files in M-CLL were closer to NBC, such
as TCLF5, HES5, and E2F3 (Fig. 6B).
E2F3 is a miR-34a target and a repressor
of the ARF/TP53 pathway. miR-34a has
been linked to chemotherapy resistance
in CLL, and its low expression is associat-
ed with TP53 aberrations and Richter
transformation (Balatti et al. 2018); (3)
TFs with different shapes of nucleosome
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occupancy profiles between CLL and NBCs, such as a depletion of
nucleosome occupancy in NBCs changed to a peak in CLL (e.g.,
JUND, PKNOX2, and FOSL1 in Fig. 6C). PKNOX2 acts as tumor
suppressor in gastric cancer via activation of IGFBP5 and TP53
(Zhang et al. 2019). JUND is involved in diffuse large B cell lym-
phoma (Papoudou-Bai et al. 2016), whereas FOSL1 was reported
to promote carcinogenesis and metastasis in various cancer types

(Jiang et al. 2020; Zhang et al. 2021), but not in CLL. The FOSL1
gene encodes the FRA1 antigen (Jiang et al. 2020), which forms
an AP-1 complex with protein of the JUN family to exert its onco-
genic effect. Thus, it is likely no coincidence that both FOSL1 and
JUND changed the shape of nucleosome occupancy profiles at
their binding sites. Gene expression of FOSL1 decreased approxi-
mately twofold in CLL versus NBCs, which may explain why

-50 0 50 100 150
-100

-50

0

50)
%9.8(

2
C

P

PC1 (38.2%)

PCA of gene expressionA

 NBC
 U-CLL 
 M-CLL type 1
 M-CLL type 2

-50 0 50 100

-60

-40

-20

0

20

40

60

80

)
%242.7(

2
C

P

PC1 (45.97%)

PCA of 5mC at promotersB

E

-30 -20 -10 0 10 20 30 40

-20

-10

0

10

20

30

40

)
%9.9(

2
C

P

PC1 (24.9%)

Nucleosomes lost 
in U-CLL vs NBC

C

-30 -20 -10 0 10
-20

-10

0

10

)
%9.5(

2
CP

PC1 (35.7%)

Nucleosomes lost 
in M-CLL vs NBCs

-20 -10 0 10 20 30 40
-25

-20

-15

-10

-5

0

5

10

)
%5.6(

2
CP

PC1 (32.21%)

Nucleosomes gained 
in U-CLL vs NBC

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

)
%73.01(

2
CP

PC1 (28.49%)

Nucleosomes gained 
in M-CLL vs NBC

F

G

D

NBC

U-CLL

CTCF

M-CLL

Cancer aggressiveness
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many of the binding sites occupied by FOSL1 in NBCs become oc-
cupied by a nucleosome in CLL. It is also worth noting that AP-1 is
known to interact with SWI/SNF chromatin remodelers
(Vierbuchen et al. 2017), thus providing a possible connection to
the involvement of BRG1 in active nucleosome repositioning
(Fig. 2I,J).

Finally, our study suggests that nucleosome positioning rep-
resents a novel biomarker for CLL patient stratification. Nucleo-
some occupancies in regions that lost or gained nucleosomes in
U-CLL versus NBCs allowed it to distinguish U-CLL, M-CLL, and
NBCs (Fig. 7C–F), whereas a similar analysis based on gene expres-
sion or DNAmethylation was less effective (Fig. 7A,B). In part, this
can be explained by the fact that CLL-specific gene expression oc-
curring in lymph nodes as the primary site of CLL proliferation is
less stably retained in peripheral than the nucleosome positioning
associated with CLL in the lymph node microenvironment (Her-
ishanu et al. 2011). In addition, usingDNAmethylation as amark-
er for the CLL disease state is confounded by the developmental
trajectory of individual CLL cases (Fig. 7B), whereas nucleosome
occupancy–based analysis was able to resolve this issue, for exam-
ple, when using subsets of regions that lost nucleosomes in CLL.
Thus, given the extensive heterogeneity in CLL, the analysis of nu-
cleosome positioning could enhance our understanding of critical
malignant transformation events that are indicative of CLL sub-
type, cell of origin, and microenvironmental cues.

In summary, nucleosome positioning undergoes large-scale
changes in malignant B cells in CLL, as reflected by the NRL
decrease, in addition to specific local changes at functional geno-
mic elements. This makes the analysis of aberrant nucleosome po-
sitions in primary tumor cells a powerful approach for
distinguishing malignant subtypes for patient stratification that,
at the same time, informs about associated deregulation mecha-
nisms. One particular area of application of the nucleosome posi-
tioning framework described here is patient diagnostics and
monitoring based on liquid biopsies of peripheral blood samples.
Identifying nucleosome positions from the analysis of cfDNA
and comparing them with cancer-specific nucleosome signatures
in cells of origin, as derived here for CLL or for breast cancer in
our recent study (Jacob et al. 2023), could provide anovel approach
to dissect the disease course from liquid biopsies. Thus, mapping
changes in nucleosome positioning in tumor versus nonmalig-
nant cells provides a wealth of information that could be exploited
for various applications in personalized precision oncology.

Methods

Generation of normalized nucleosome occupancy profiles

The MNase-assisted histone H3 ChIP-seq reads in NBCs, M-CLL,
andU-CLLwere fromour previous study and accessed from the Eu-
ropean Genome-phenome Archive (EGA; https://ega-archive.org)
under accession number EGAS00001002518 (Mallm et al. 2019).
The CLL samples studied here were from asymptomatic patients
under a watch-and-wait treatment strategy with high leukocyte
counts of 101×109 L−1 (median) andwith no significant biases be-
tween U-CLL and M-CLL samples. The leukocyte count of the
healthy donors was in the range of 4.5 × 109 L−1 to 11×109 L−1.
Thus, for the purpose of our analysis, the potential contribution
of NBCs in the CLL samples can be neglected. Paired-end se-
quenced reads were mapped with Bowtie (Langmead et al. 2009)
to human genome hg19, allowing up to onemismatch and retain-
ing only uniquely mappable reads. This resulted in about 150 mil-
lion paired reads/sample for a total of 26 samples (six NBCs, 16 M-

CLL, and four U-CLL) (Supplemental Table S3). The cfDNAtools
script extract_nuc_sizes.pl (see Data access) was used to extract
fragments of 120–180 bp in size, after which we obtained, on aver-
age, 105 million paired reads/sample. NucTools (Vainshtein et al.
2017)was used to calculate genome-wide nucleosome occupancies
per chromosome with single-base-pair resolution. This analysis
workflow is described in further detail below and includes a nor-
malization of nucleosome occupancy per sample per chromosome
for sequencing depth. Averaged profiles for a given sample were
calculated based on the normalized profiles of individual patients
using NucTools with a 100-bp running window. The resulting ge-
nome-wide nucleosome occupancymaps for the complete sample
set derived here are available at the NCBI Gene Expression Omni-
bus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession
number GSE158745. Because we limited our analysis to uniquely
mappable regions, realigning these data to a newer human ge-
nome assembly would not affect the major conclusions of this
study. As described previously, our experimental procedures in-
cluded counting the numbers of cells in each sample to have the
same amount of input material for chromatin digestion and to
reach the same degree of MNase digestion for the sample set stud-
ied (Mallm et al. 2019).

Identification of nucleosomes with changed location in CLL

The annotation as a stable/shifted nucleosome refers to DNA frag-
ments of 120–180 bp size that had genomic coordinates overlap-
ping >95% between all replicates of all conditions (“stable”) or
<80%overlapping betweenNBCs andCLL (“shifted”). Only nucle-
osomes with stable positions across all NBC samples (overlapped
>95% between all NBC replicates) were included in this analysis.
This set of nucleosomes was determined by performing a pairwise
intersection between the corresponding samples using BEDTools
with the parameters -u -f 0.95. Coordinates of nucleosomes that
were shifted >20% were obtained by intersection with the param-
eters -f 0.80 -r -v. Aggregate methylation profiles at such nucleo-
somes were calculated using NucTools considering only CpGs
with beta-values of 0.8 or more, which were selected using the
script methylationThresholds.pl (see Data access).

Identification of genomic regions of differential nucleosome

occupancy in CLL

Differences in nucleosome occupancy between NBCs, M-CLL, and
U-CLL were identified with NucTools. First, we averaged nucleo-
some occupancy values genome-wide with a sliding window of
100 bp or 1000 bp (as detailed below) separately for each sample.
Next, we defined regions that have stable nucleosome occupancy
within each condition. This step included the normalization of
nucleosome occupancy profiles by the sequencing depth per chro-
mosome per sample. Normalized profiles in each 100-bp window
were averaged across all samples in a given condition (six NBCs,
16 M-CLL, four U-CLL). Genomic regions with a relative error of
the averaged nucleosome occupancy <0.5 were annotated as “sta-
ble-nucleosome” regions. The stable-nucleosome regions were
used to perform pairwise occupancy comparisons between M-
CLL and NBCs, U-CLL and NBCs, and U-CLL and M-CLL with
the NucTools script compare_two_conditions.pl. This script calcu-
lates the relative occupancy change (Odiff) as Odiff = 2 × (<ON1>−
<ON2>)/(<ON1>+<ON2>). The parameter <ON1> corresponds to
the averaged nucleosome occupancy in data set 1, and <ON2> is
the average occupancy in data set 2. Regions that lost or gained nu-
cleosomes between conditions are defined as those in which the
relative occupancy change exceeds a given threshold. A 1000-bp
sliding window and Odiff = 0.70 were used to calculate relative
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occupancy changes for the comparison of U-CLL versus NBC and
M-CLL versus NBC reported in Figure 7 and Supplemental Figures
S13 and S14. For all other calculations, a 100-bp sliding window
size was used with Odiff = 0.99 for U-CLL versus NBC and M-CLL
versus U-CLL and Odiff = 0.70 for M-CLL versus NBC due to the
lower number of regions reported.

Enrichment analysis

Fold enrichment of genomic features in lost/gain-nucleosome re-
gions was calculated using BEDTools “fisher” function (Quinlan
2014). All results were statistically significant based on the two-
tailed Fisher’s test, P<0.05. Pathway enrichment analysis was per-
formed in DAVID 6.8 (Jiao et al. 2012) and gprofiler2 (Raudvere
et al. 2019) and visualized with Origin Pro (OriginLab). The visual-
ization of TF networks based on binding sites with differential nu-
cleosome occupancy in M-CLL and U-CLL was performed with
Pathway Commons Network Visualizer (Rodchenkov et al. 2020).

NRL analysis

NRL was calculated with NucTools following our protocol de-
scribed previously (Vainshtein et al. 2017) but discarding the first
peak of the nucleosome–nucleosome distance distributions to
make the calculationmore robust against the level ofMNase diges-
tion. The standard error of the NRL estimation was <1 bp for all
samples.

CTCF binding analysis

CTCF binding sites inside CTCF ChIP-seq peaks were predicted
with GimmeMotifs (van Heeringen and Veenstra 2011) using the
weight matrix MA0139.1 from JASPAR (Khan et al. 2018) and ac-
ceptingmotifs with a similarity score >80%. These sites were inter-
sected using BEDTools with the experimentally determined CTCF
ChIP-seq peaks for each sample from GEO accession number
GSE113336 to obtain CTCF binding sites specific to NBCs, M-
CLL, and U-CLL. CTCF sites present in both NBCs and B cells
from all CLL patients were termed “common,” and sites present
only in NBCs but not in CLL were termed “lost”; 41,202 CTCF-
bound ChIP-seq peaks observed both in NBCs and CLL were de-
fined as common, which contained 43,754 unique CTCF motifs.
In addition, 718 CTCF-bound ChIP-seq peaks that were lost in
CLL versusNBCs contained 708CTCFmotifs; 430 peaks contained
124 motifs that gained CTCF binding in M-CLL versus NBCs; and
369 peaks contained 255 motifs that gained CTCF binding in U-
CLL versus NBCs. Furthermore, the computationally predicted
CTCFmotifswere split into three quantiles based on themotif sim-
ilarity determined with TFBStools (Tan and Lenhard 2016). Sites
with a similarity score of 80%–81% were defined as quantile 1
CTCF motifs; a score of 81%–83% as quantile 2 CTCF motifs; and
a score >83% as quantile 3.

Calculation of aggregate profiles of nucleosome occupancy and

histone modifications

Calculation of aggregate nucleosome profiles was performed with
HOMER (Heinz et al. 2010), using only DNA fragments with sizes
of 120–180 bp unless specified otherwise in the text. Aggregate
profiles of seven histone modifications measured with ChIP-seq
for this cohort (Mallm et al. 2019) were calculated using HOMER
considering all ChIP-seq reads uniquely mapped with Bowtie to
hg19 genome with up to one mismatch. Calculation of the aggre-
gate methylation profiles was performed using custom Perl scripts
as detailed below.

Calculation of aggregate DNA methylation profiles

We calculated two types of DNA methylation profiles. In the first
type of analysis (Figs. 2A,B, 2E–H, 5A,B, 7B; Supplemental Figs.
S4, S6, S8), CpGs with beta-values higher than 0.8 for each sample
were extracted using the scriptmethylationThresholds.pl (seeData
access) and split into chromosomes using NucTools script extrac-
t_chr_bed.pl followed by NucTools script bed2occupancy_avera-
ge.pl to calculate DNA methylation density arising from such
CpGs genome-wide with a 1-bp sliding window. This was then
used for calculating occupancy profiles around genomic features
with NucTools script aggregate_profile.pl. In this type of calcula-
tion, each CpG with a beta-value greater than 0.8 contributes
equally. In the second type of calculation (Fig. 4A–D), DNA meth-
ylation data reported previously for this cohort (Mallm et al. 2019)
were processed with the Perl script bed2occupancy.v3d.methyl.pl
(see Data access) as described previously (Wiehle et al. 2019). The
actual methylation beta-values with values from zero to one were
added up for each individual CpG located at a given distance from
the genomic feature of interest. The value of “DNA methylation
(a.u.)” in the plots corresponds to the sum of all corresponding
beta-values without further normalization. DNAmethylation pro-
files of individual example regions were calculated considering all
methylation beta-values (Fig. 1D; Supplemental Fig. S3).

Principal component analysis

DNA methylation and nucleosome occupancy values averaged
over a 100-bp window for each sample were intersected with coor-
dinates of genomic features of interest (e.g., promoters or regions
that lost/gained nucleosome occupancy in CLL) to create a matrix
of occupancy values at the specified genomic regions, for each
sample. PCA was performed in R (R Core Team 2023), and the re-
lationship of principal components 1 and 2 was visualized in
Origin Pro (OriginLab).

Annotation of genomic features

Thecoordinates of the100,000-bpgenomic regions, annotatedasA
and B chromatin compartments in NBCs from peripheral blood,
were kindly provided by Vilarrasa-Blasi et al. (2021) as BED files
in hg38 genome assembly. This included 8300 A and 8786 B com-
partments in NBCs. The liftOver utility from the UCSC Genome
Browser (Kent et al. 2002) was used to convert the coordinates
from hg38 to hg19 with default settings. Conversion failed on 48
and 35 A and B compartment records, respectively. Promoters
were defined as regions ±1000 bp around the TSS, based on RefSeq
annotation for hg19. Enhancers specific to NBCs and CLLwere de-
fined based on the same cohort following themethod of our previ-
ous report (Mallm et al. 2019). Binding sites of SP1 andCHD1were
determined based on ChIP-seq peaks in lymphoblastoid cell line
GM12878 reported by the ENCODE Consortium (GEO accession
numbers GSM803363 andGSM935301 correspondingly) (The EN-
CODE Project Consortium 2012). Binding sites of HDAC1 in pe-
ripheral blood mononuclear cells from CLL patients with the 11q
deletion genotype were determined based on ChIP-seq peaks
downloaded from GEO accession number GSE216287 (Lai et al.
2023). Enrichment of BRG1 was calculated using ChIP-seq of
BRG1 binding in naïve B cells J1 (GSM971343) (Abraham et al.
2013). For the latter, wemapped the raw data to the hg19 genome,
calculated aggregate profiles with HOMER, and then normalized
these by dividing the BRG1 ChIP-seq signal by the corresponding
Input reported by the investigators.
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Data access

The processed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE158745. The raw sequencing data, including MNase-assisted
H3 ChIP-seq, have been submitted to the European Genome-
phenome Archive (EGA; https://ega-archive.org) under accession
number EGAS00001002518. All custom scripts generated in
this study are available at GitHub (https://github.com/TeifLab/
cfDNAtools) and as Supplemental Scripts.
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